Thursday, August 29, 2019

Aplastic Anemia

Aplastic anemia is also sometimes associated with exposure to toxins such as  benzene, or with the use of certain drugs, includingchloramphenicol,  carbamazepine,  felbamate,  phenytoin,  quinine, and  phenylbutazone. Many drugs are associated with aplasia mainly according to case reports but at a very low probability. As an example, chloramphenicol treatment is followed by aplasia in less than 1 in 40,000 treatment courses, and carbamazepine aplasia is even more rare. Exposure to  ionizing radiation  from  radioactive materials  or radiation-producing devices is also associated with the development of aplastic anemia. Aplastic anemia is present in up to 2% of patients with acute  viral hepatitis[citation needed]. In some animals aplastic anemia may have other causes. For example, in the  ferret  (Mustela putorius furo) aplastic anemia is caused byestrogen  toxicity. This is because female ferrets are  induced ovulators, so mating is required to bring the female out of heat. Intact females, if not mated, will remain in heat, and after some time the high levels of estrogen will cause the bone marrow to stop producing red blood cells. The condition needs to be differentiated from pure red cell aplasia. In aplastic anemia the patient has pancytopenia (i. e. , anemia, neutropenia and thrombocytopenia) resulting in decrease of all formed elements. In contrast, pure red cell aplasia is characterized by reduction in red cells only. The diagnosis can only be confirmed on  bone marrow examination. Before this procedure is undertaken, a patient will generally have had other  blood tests  to find diagnostic clues, including a  complete blood count  (CBC),  renal function  and  electrolytes,  liver enzymes,  thyroidfunction tests,  vitamin B12  and  folic acid  levels. Following tests aid in determining differential diagnosis for aplastic anemia: 1. Bone marrow aspirate and biopsy: to rule out other causes of pancytopenia (i. e. neoplastic infiltration or significant myelofibrosis). 2. History of iatrogenic exposure to cytotoxic chemotherapy: can cause transient bone marrow suppression 3. X-rays, computed tomography (CT) scans, or ultrasound imaging tests: enlarged lymph nodes (sign of lymphoma), kidneys and bones in arms and hands (abnormal in Fanconi anemia) 4. Chest X-ray: infections 5. Liver tests: liver diseases . Viral studies: viral infections 7. Vitamin B12  and folate levels: vitamin deficiency 8. Blood tests for  paroxysmal nocturnal hemoglobinuria 9. Test for antibodies: immune competency. Treating immune-mediated aplastic anemia involves suppression of the  immune system, an effect achieved by daily  medicine  intake, or, in more severe cases, a  bone marrow transplant, a potential cure. [2]  The transplanted bone marrow r eplaces the failing bone marrow cells with new ones from a matching donor. The  multipotent  stem cells in the bone marrow reconstitute all three blood cell lines, giving the patient a new immune system, red blood cells, and platelets. However, besides the risk of graft failure, there is also a risk that the newly created white blood cells may attack the rest of the body (graft-versus-host disease). Medical therapy of aplastic anemia often includes a short course of  anti-thymocyte globulin  (ATG) or  anti-lymphocyte globulin  (ALG) and several months of treatment with  ciclosporin  to modulate the  immune system. Mild  chemotherapy  with agents such as  cyclophosphamide  andvincristine  may also be effective. Antibody  therapy, such as ATG, targets T-cells, which are believed to attack the bone marrow. Steroids  are generally ineffective, though are often used to combat  serum sickness  caused by ATG use. One prospective study involving cyclophosphamide was terminated early due to a high incidence of mortality, due to severe infections as a result of prolonged  neutropenia. [3] In the past, before the above treatments became available, patients with low leukocyte counts were often confined to a sterile room or bubble (to reduce risk of  infections), as in the famed case of  Ted DeVita. 4] [edit]Follow-up Regular  full blood counts  are required to determine whether the patient is still in a state of remission. 10-33% of all patients develop the  rare disease  paroxysmal nocturnal hemoglobinuria  (PNH, anemia with thrombopenia and/or  thrombosis), which has been explained as an escape mechanism by the bone marrow against destruction by the immune system. Flow cyto metry  testing is performed regularly in people with previous aplastic anemia to monitor for the development of PNH.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.